A region N-terminal to the tandem SH3 domain of p47phox plays a crucial role in the activation of the phagocyte NADPH oxidase.
نویسندگان
چکیده
The superoxide-producing NADPH oxidase in phagocytes is crucial for host defence; its catalytic core is the membrane-integrated protein gp91phox [also known as Nox2 (NADPH oxidase 2)], which forms a stable heterodimer with p22phox. Activation of the oxidase requires membrane translocation of the three cytosolic proteins p47phox, p67phox and the small GTPase Rac. At the membrane, these proteins assemble with the gp91phox-p22phox heterodimer and induce a conformational change of gp91phox, leading to superoxide production. p47phox translocates to membranes using its two tandemly arranged SH3 domains, which directly interact with p22phox, whereas p67phox is recruited in a p47phox-dependent manner. In the present study, we show that a short region N-terminal to the bis-SH3 domain is required for activation of the phagocyte NADPH oxidase. Alanine substitution for Ile152 in this region, a residue that is completely conserved during evolution, results in a loss of the ability to activate the oxidase; and the replacement of Thr153 also prevents oxidase activation, but to a lesser extent. In addition, the corresponding isoleucine residue (Ile155) of the p47phox homologue Noxo1 (Nox organizer 1) participates in the activation of non-phagocytic oxidases, such as Nox1 and Nox3. The I152A substitution in p47phox, however, does not affect its interaction with p22phox or with p67phox. Consistent with this, a mutant p47phox (I152A), as well as the wild-type protein, is targeted upon cell stimulation to membranes, and membrane recruitment of p67phox and Rac normally occurs in p47phox (I152A)-expressing cells. Thus the Ile152-containing region of p47phox plays a crucial role in oxidase activation, probably by functioning at a process after oxidase assembly.
منابع مشابه
Role of Src homology 3 domains in assembly and activation of the phagocyte NADPH oxidase.
The phagocyte NADPH oxidase, dormant in resting cells, is activated during phagocytosis to produce superoxide, a precursor of microbicidal oxidants. The activated oxidase is a complex of membrane-integrated cytochrome b558, composed of 91-kDa (gp91phox) and 22-kDa (p22phox) subunits, and two cytosolic factors (p47phox and p67phox), each containing two Src homology 3 (SH3) domains. Here we show ...
متن کاملProperties of phagocyte NADPH oxidase p47-phox mutants with unmasked SH3 (Src homology 3) domains: full reconstitution of oxidase activity in a semi-recombinant cell-free system lacking arachidonic acid.
In an early step in the assembly of the phagocyte NADPH oxidase, p47-phox translocates from the cytosol to the membrane, mediated by engagement of the N-termini of two p47-phox Src homology 3 (SH3) domains with a proline-rich region (PRR) in the p22-phox subunit of cytochrome b (558). In response to phagocyte activation, several serine residues in a C-terminal arginine/lysine-rich domain of p47...
متن کاملAn SH3 domain and proline-rich sequence mediate an interaction between two components of the phagocyte NADPH oxidase complex.
Neutrophils possess a multicomponent NADPH oxidase system capable of producing large quantities of superoxide in a process known as the respiratory burst (1). Upon stimulation of a phagocytic cell, two cytosolic components of the oxidase, p67phox and p47phox, associate with a membrane-bound flavocytochrome b and a small GTP-binding protein to form a functional enzyme complex. Each of the Phox p...
متن کاملActivation of the phagocyte NADPH oxidase protein p47(phox). Phosphorylation controls SH3 domain-dependent binding to p22(phox).
Activation of phagocyte NADPH oxidase requires interaction between p47(phox) and p22(phox). p47(phox) in resting phagocytes does not bind p22(phox). Phosphorylation of serines in the p47(phox) C terminus enables binding to the p22(phox) C terminus by inducing a conformational change in p47(phox) that unmasks the SH3A domain. We report that an arginine/lysine-rich region in the p47(phox) C termi...
متن کاملActivation of the Phagocyte NADPH Oxidase Protein p47
Activation of phagocyte NADPH oxidase requires interaction between p47 and p22. p47 in resting phagocytes does not bind p22. Phosphorylation of serines in the p47 C terminus enables binding to the p22 C terminus by inducing a conformational change in p47 that unmasks the SH3A domain. We report that an arginine/lysine-rich region in the p47 C terminus binds the p47 SH3 domains expressed in tande...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 419 2 شماره
صفحات -
تاریخ انتشار 2009